Abstract

Cyclin G-associated kinase (GAK), the ubiquitous form of the neuronal-specific protein auxilin 1, is an essential cofactor for Hsc70-dependent uncoating of clathrin-coated vesicles. Total internal reflectance microscopy was used to determine the timing of GAK binding relative to dynamin and clathrin binding during invagination of clathrin-coated pits. Following transient recruitment of dynamin to the clathrin puncta, large amounts of GAK are transiently recruited. GAK and clathrin then disappear from the evanescent field as the pit invaginates from the plasma membrane and finally these proteins disappear from the epifluorescence field, probably as the clathrin is uncoated from the budded vesicles by Hsc70. The recruitment of GAK is dependent on its PTEN-like domain, which we found binds to phospholipids. This suggests that interaction with phospholipids is essential for recruitment of GAK and, in turn, Hsc70, but Hsc70 recruitment alone might not be sufficient to induce irreversible clathrin uncoating. When budding of clathrin-coated pits is inhibited by actin depolymerization, there is repeated flashing of GAK on the clathrin-coated pit but neither scission nor irreversible uncoating occur. Therefore, budding as well as synchronous recruitment of GAK might be required for irreversible clathrin uncoating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.