Abstract

Perfluorohexane gas when introduced in the air atmosphere above a film of phospholipid self-supported on an aqueous solution of C2F5-labeled compounds causes the recruitment and immobilization of the latter in the interfacial film. When the phospholipid forms a liquid-condensed Gibbs monolayer, which is the case for dipalmitoylphosphatidylcholine (DPPC), the C2F5-labeled molecule remains trapped in the monolayer after removal of F-hexane. Investigations involve bubble profile analysis tensiometry (Gibbs films), Langmuir monolayers and microbubble experiments. The new phenomenon was utilized to incorporate a hypoxia biomarker, a C2F5-labeled nitrosoimidazole (EF5), in microbubble shells. This finding opens perspectives in the delivery of fluorinated therapeutic molecules and biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.