Abstract

Rolling processes are extensively used to induce network of shear bands (SBs) in the bulk metallic glasses, which in turn enhances the overall plasticity of the specimen. However, the atomic-level understanding of shear band formation/propagation mechanism during mechanical processing is still limited. In this perspective, we have developed a molecular dynamics (MD) simulation model to recreate the rolling deformation process and investigate the SB formation in Cu-Zr metallic glass (MG) specimen. Results have shown that dense and concentrated primary SBs along with secondary branching are formed during cryo-rolling, whereas a scattered and thicker SBs are formed during hot rolling process. Meanwhile, Voronoi cluster analysis revealed that the high five-fold symmetry clusters tend to decrease, while the crystalline-like cluster increases during the hot rolling process. These findings from the study are in good agreement with previous experimental studies substantiated in literature, which shows that the model correctly predicts the shear-banding phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.