Abstract
DNA triplex structures can block the replication fork and result in double-stranded DNA breaks (DSBs). RecQ and RecG helicases may be important for replication of such sequences as RecQ resolves synthetic triplex DNA structures and RecG mediates replication restart by fork regression. Primer extension on an 88 bp triplex-forming polypurine·polypyrimidine (Pu·Py) tract from the PKD1 gene demonstrated that RecQ, but not RecG, facilitated primer extension by T7 DNA polymerase. A high-throughput, dual plasmid screening system using isogenic bacterial lines deficient in RecG, RecQ, or both, revealed that RecQ deficiency increased mutation to sequence flanking this 88 bp tract by eight to ten-fold. Although RecG facilitated small deletions in an 88 bp mirror repeat-containing sequence, it was absolutely required to maintain a 2.5 kb Pu·Py tract containing multiple mirror repeats. These results support a two-tiered model where RecQ facilitates fork progression through triplex-forming tracts and, failing processivity, RecG is critical for replication fork restart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.