Abstract

A special class of smart material was developed using shape memory polyurethane (SMPU) elastomer and graphene nanoplatelets (GNPs) via melt-blending process using micro-compounder. The shape recovery of the developed composites was studied under microwave irradiation. The nanocomposites were developed having 0.2, 0.4, 0.6, and 0.8 phr GNPs in the SMPU matrix. The effects of GNP reinforcement on morphology, shape memory effects, and viscoelastic properties of the composites were investigated. The recovery stress of virgin SMPU increased with reinforcement and maximized on the incorporation of 0.6 phr GNPs. The deformation-induced shape memory creation process influenced significantly the recovery stress of composites as compared to virgin SMPU. The recovery stresses of SMPU at 50, 75, and 100% strain were 1.5, 1.7, and 1.9 MPa, whereas the values of GNP-SMPU composites were 3.2, 3.4, and 4.1 MPa corresponding to 0.6 phr GNP reinforcement. The value of storage modulus above the glass transition temperature of SMPU increased from 9.2 to 15.1 MPa on the addition of 0.6 phr GNPs. The peak of the damping factor, tan δ shifted toward higher temperatures with the increased GNP content. The morphological study confirms the uniform dispersion of GNPs in the SMPU matrix. The microwave-induced heating of 0.8 phr GNP composite shows 80% shape recovery in 60 s, which is faster than convectional heating.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.