Abstract

By irradiating the multi-pulse excimer laser with the energy density smaller than 200 mJ/cm 2 on the amorphous silicon (a-Si), the crystallinity of the Si increases, as increasing the number of the pulse. During the first laser irradiation some part of the melted a-Si becomes the polycrystalline (poly)-Si which corresponds to the nucleus, and after the second irradiation the poly-Si does not melt and the remaining a-Si becomes the poly-Si. The crystal growth of the poly-Si proceeds by the solid phase crystallization (SPC). Crystal growth of poly-Si by excimer laser annealing (ELA) is discussed by considering the recovery stage. This stage is examined from the relationship between the amorphous Si area and the total irradiation time. The fact that the measured data coincides with the theoretical data indicates that the recovery proceeds during the ELA at the low energy density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.