Abstract

Brain mapping during awake craniotomy for gliomas can help preserve neurological functions, including maintenance of central and peripheral vision. However, the consecutive changes in the visual field remain unknown. We retrospectively assessed 14 patients who underwent awake craniotomy for gliomas infiltrating into the optic radiation. Cortico-subcortical direct electrical stimulation (DES) was intraoperatively applied until transient visual symptoms were elicited and recorded. The visual fields were examined consecutively in the preoperative period and postoperative subacute and chronic periods. To evaluate the anatomo-functional validity of the recordings, all DES-elicited points were overlaid onto a three-dimensional template that included the optic radiation, using voxel-based morphometry (VBM) mapping. All patients experienced visual symptoms that were classified as phosphenes, blurred vision, or hallucinations during DES, and surgical resection was limited to within the functional boundaries. In VBM, almost all the subcortical positive mapping points overlapped with the surface of the optic radiation, and the distribution of sites that induced visual phenomena in the upper or lower visual fields could be differentiated in the anatomical space. We observed no postoperative visual deficit in four patients (29%), time-dependent improvements in five out of eight patients that presented transient quadrantanopia or partial visual defect (36% out of 57%), and permanent hemianopsia (14%) in two patients with occipital lesions. Intraoperative DES that identifies and preserves optic radiation in awake craniotomy for gliomas is a reliable and effective technique to reduce risk of permanent deficits, but has a low success rate in patients with occipital involvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call