Abstract

Abstract: Forest fires often result in varying degrees of canopy loss in forested landscapes. The subsequent trajectory of vegetation canopy recovery is important for ecosystem processes because the canopy controls photosynthesis and evapotranspiration. The loss and recovery of a canopy is often measured by leaf area index (LAI) and other vegetation indices that are related to canopy photosynthetic capacity. In this study we used time series imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the Terra satellite over the period of 2000–2009 to track the recovery of the vegetation canopy after fire. The Black Hills National Forest, South Dakota, USA experienced an extensive wildfire starting on August 24, 2000 that burned a total area of 33 785 ha, most of which was ponderosa pine forest. The MODIS data show that canopy photosynthetic capacity, as measured by LAI, recovered within 3 years (2001–2003). This recovery was attributed to rapid emergence of understory grass spec...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call