Abstract
The widespread use of selective catalytic reduction (SCR) catalysts has resulted in a large accumulation of spent SCR catalysts. These spent catalysts present a significant risk of environmental hazards and potential for resource recovery. This paper presents a feasible process, which works using atmospheric pressure leaching, of tungsten and titanium recovery from spent SCR catalysts. In this new method, titanium and tungsten are simultaneously leached with sulfuric acid as the leaching agent. After hydrolysis and calcination, titanium-tungsten powder with low impurity and reconstructed pore properties was obtained. The optimal conditions for the leaching of Ti and W were as follows: temperature, 150 °C; reaction time, 60 min; H2SO4 concentration, 80 %; mass ratio of H2SO4/TiO2, 3:1; and diluted H2SO4 concentration, 20 % after reaction. With these optimum conditions, the leaching efficiency of Ti and W were found to be 95.92 % and 93.83 %, respectively. The ion speciation and reaction mechanism of W were studied by Raman spectroscopy, FTIR, and UV–vis. The formation of heteropolytungstate with a Keggin structure is essential for the synergistic leaching of Ti and W, as the heteropolytungstate can be stably dissolved in the acid solution. During the hydrolysis process, heteropolytungstate gradually decomposed into Ti4+ and WO42− due to the formation of insoluble Ti(OH)4 from Ti4+ in the solution. This study demonstrated an effective method for synergistic recovery of titanium and tungsten from the spent SCR catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.