Abstract

The dynamics of motor function recovery in a patient with an extensive brain lesion has been investigated during a course of neurorehabilitation assisted by a hand exoskeleton controlled by a brain–computer interface. Biomechanical analysis of the movements of the paretic arm recorded during the rehabilitation course was used for an unbiased assessment of motor function. Fifteen procedures involving hand exoskeleton control (one procedure per week) yielded the following results: (a) the velocity profile for targeted movements of the paretic hand became nearly bell-shaped; (b) the patient began to extend and abduct the hand, which was flexed and adducted at the beginning of the course; and (c) the patient started supinating the forearm, which was pronated at the beginning of the rehabilitation course. The first result is interpreted as improvement of the general level of control over the paretic hand, and the two other results are interpreted as a decrease in spasticity of the paretic hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.