Abstract
The experimentally observed nonlinearities of the current–voltage characteristics (CVCs) of tantalum-based point homo- and heterocontacts in both normal and superconducting states related to electron–phonon interaction (EPI) were analyzed. It was taken into account that additional nonlinearity of CVCs arising upon contact transition to the superconducting state (superconducting spectral component) is formed not only near the constriction in the region roughly equal to the contact diameter (as is the case for the normal state, and as predicted theoretically for the superconducting state), but also in a markedly larger region that is about the size of the coherence length. In this case, a considerable role in the formation of this superconducting component is played by nonequilibrium phonons with low group velocity, which account for the experimentally observed sharpening of the phonon peaks in the EPI spectra (the second derivatives of the CVCs) during the superconducting transition of the contacts, instead of the theoretically expected peak broadening (spreading), and for the increase in the superconducting contribution to the point contact spectrum in the low and medium energy regions. The high-energy part of the EPI spectrum changes much less significantly during the superconducting transition, which is attributable to suppression of the excess contact current by nonequilibrium quasi-particles. A detailed procedure was proposed for the recovery of the EPI spectral function from the point contact spectrum contribution (the second derivative of the CVC) that arises during the superconducting transition of one or both contacting metals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.