Abstract

Albedo influences vegetation structure, permafrost thawing, etc., in particular, after wildfires in Picea mariana forests in Alaska, USA, while albedo changes with plant succession. To understand interactions between albedo and ecosystem recovery after wildfire, surface albedo was measured in the spring and summer of 2005 at Poker Flat, interior Alaska, where P. mariana forest was dominant. The ground surface was mostly covered with Sphagnum moss before the 2004 wildfire, and was variously burned by the fire. The measured wavelengths ranged from 0.3 to 3.0 μm. We measured four independent variables, incidence, plant cover on the forest floor, cover of burned ground surface, canopy openness and incidence, to examine the determinants on surface albedo. Multiple regression analysis showed that total plant cover positively and mostly determines albedo, indicating that plant recovery is prerequisite to return high albedo. When the ground surface was damaged by fire, changes in albedo were mostly derived from decrease in reflectance wavelengths between 0.7 and 1.4 μm. The fluctuations of reflectance wavelengths did not differ greatly between damaged-moss and burned surfaces. We must mention the dynamics of Sphagnum to understand various environmental changes including surface albedo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call