Abstract
In this work, sulfur recovery from sulfur-rich wastes deriving from sulfur filtration was investigated through laboratory experiments and full-scale tests in an industrial combustion rotary kiln, where elemental sulfur is converted to SO2 in a sulfuric acid production plant. Phase equilibria experiments carried out in the temperature range 1100–1400 °C and industrial scale tests demonstrated that temperature is the most important operating parameter in determining the recovery efficiency and the plant operability. The full-scale tests performed on the rotary kiln showed that, at operating temperatures around 1200 °C, a continuous sulfur recovery from the filter cakes was obtained with an average efficiency of 87% and a consequent reduction of about 70% of the solid waste material to be disposed as inert in landfills or used in cement/glass industries. The efficiency of sulfur recovery increases with the increasing operating temperature but, above 1300 °C, the melting of the residual Ca-Fe-Al-silicate phase and the eventual recrystallization at the kiln refractory walls occurred, causing a forced plant shutdown.The chemical-physical interaction between the sulfur-rich filter cake and different refractory materials was further investigated in the temperature range 1100–1300 °C. At the recommended operation temperatures of 1100–1200 °C, the interaction between the refractory material and the combustion ashes is negligible for all tested materials. Nonetheless, the use of Fe- and Cr-free refractory materials for the internal lining of the kiln must be preferred to minimize the deposition/adhesion of Ca-Fe-Al-silicates derived from combustion over long-term operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.