Abstract

This study evaluated the subcritical water hydrolysis (SWH) of brewer's spent grains (BSG) to obtain sugars and amino acids. The experimental conditions investigated the hydrolysis of BSG in a single flow-through reactor and in two sequential reactors operated in semi-continuous mode. The hydrolysis experiments were carried out for 120 min at 15 MPa, 5 mL water min−1, at different temperatures (80 – 180 °C) and using an S/F of 20 and 10 g solvent g−1 BSG, for the single and two sequential reactors, respectively. The highest monosaccharide yields were obtained at 180 °C in a single reactor (47.76 mg g−1 carbohydrates). With these operational conditions, the hydrolysate presented xylose (0.477 mg mL−1) and arabinose (1.039 mg mL−1) as main sugars, while low contents of furfural (310.7 µg mL−1), 5-hydroxymethylfurfural (<1 mg L-1), and organic acids (0.343 mg mL−1) were obtained. The yield of proteins at 180 °C in a process with a single reactor was 43.62 mg amino acids g−1 proteins, where tryptophan (215.55 µg mL−1), aspartic acid (123.35 µg mL−1), valine (64.35 µg mL−1), lysine (16.55 µg mL−1), and glycine (16.1 µg mL−1) were the main amino acids recovered in the hydrolysate. In conclusion, SWH pretreatment is a promising technology to recover bio-based compounds from BSG; however, further studies are still needed to increase the yield of bioproducts from lignocellulosic biomass to explore two sequential reactors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call