Abstract

Contaminants in swine wastewater were recovered in the form of struvite, a crystal of magnesium ammonium phosphate (MAP), using a newly designed process, and the leaching loss of MAP in soil was examined. The continuous flow process was operated under optimal conditions: 1.0 molar ratio of magnesium (Mg) addition with respect to orthophosphate (OP) and an aeration rate of 0.73L/Lmin. Five treatments were performed with three replications for soil pH and nutrient leaching loss tests. It was found that 93% of the OP in the swine wastewater was crystallized, and the MAP crystal formation was verified by X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses. The analyses revealed that the pattern of pH change and N leaching losses for MAP-treated soil were remarkably different from those for fused super phosphate (FSP)-urea-treated soils. The pH levels for the control and FSP-urea-treated soils after a five-week experiment were unchanged or slightly decreased, whereas an increase in pH was observed in the MAP-treated soils. Leaching loss of N was higher in FSP-urea treatments, with MAP treatments showing N losses of only 1.93 and 2.05%, respectively, while FSP-urea treatments showed N losses of 7.82 and 6.47%, respectively, during the same period. Phosphate (P) leaching was very slow in both MAP- and FSP-treated groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.