Abstract
Sinapic acid is a potential valuable compound to be recovered from rapeseed meal extracts as it processes antioxidant and antimicrobial properties. However, the concentration of this compound might be low and the presence of other low value compounds could complicate its downstream processing. Adsorption is an alternative technique that might allow selective recovery of this compound. This work was focused on establishing the foundation of an industrial process design to recover sinapic acid by adsorption. The obtained results from multicomponent experiments indicate that, resin AmberliteTM FPX66 is the best performing one showing a maximum adsorption capacity of 102.6+11.7mg/gresin, easy sinapic acid recovery by desorbing it with 70% ethanol and high selectivity to sinapic acid over glucose, phytic acid and glucosinolates. The obtained equilibrium information was applied as input in a dynamic column model and compared with experimental results, showing a good agreement (r2=0.98). The model can be further applied for a large-scale chromatography process design to recover sinapic acid from rapeseed/canola meal extracts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.