Abstract

BackgroundPeripheral nerve injury (PNI) can result in neurodegenerative changes leading to motor, sensory and autonomic dysfunction. Injury to the rat sciatic nerve is used to model pathophysiologic processes following PNI and assess the efficacy of therapeutic interventions. Frequently, temporal changes in the sciatic functional index (SFI), a measure of sensorimotor integration are measured in rats to assess functional recovery following sciatic nerve injury. However, multiple rat strains and behavioral endpoints have been employed to investigate pathophysiology of PNI and impact of therapeutic intervention on recovery, raising the possibility that rat strain may influence the outcome of such studies. New methodThe temporal course of recovery from sham, sciatic nerve crush or transection injury was assessed using SFI determined by two methods (footprint and DigiGait), and proprioceptive hind limb placement (a measure of proprioceptive integrity) of the sciatic nerve innervation, in male Sprague Dawley, Lewis, Fischer, Wistar and Long Evans rats. ResultsThe SFI profile, as assessed by both inked footprint analysis and DigiGait, following sciatic nerve injury was remarkably conserved across strains. Dramatic strain-related differences were observed in the latency to place the crush- or transection-injured hind limb following proprioceptive hind limb stimulation. Comparison with existing methodThe novelty of this study is the parallel comparison of multiple strains using existing and novel tests. ConclusionThese results suggest that some sensorimotor function tests may be sensitive to the choice of strain, as evidenced by the differences between SFI and proprioceptive function outcomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call