Abstract

Following partial denervation of adult rat skeletal muscle intact axons sprout to reinnervate denervated muscle fibres and increase their territory. The extent of this increase is limited and may depend on the ability of axon terminals to form and maintain synaptic contacts with the denervated muscle fibres. Here we tested the possibility whether reducing Ca 2+ entry into presynaptic nerve terminals through dihydropyridine sensitive channels may allow more nerve–muscle contacts to be formed and maintained. Hindlimb muscles of adult Wistar rats were partially denervated by removing a small segment of the L4 or L5 spinal nerve on one side. A nifedipine-containing silastic rubber strip was subsequently implanted close to the partially denervated soleus or extensor digitorum longus (EDL) muscles in some animals. In control experiments silastic strips which did not contain nifedipine were used. Several weeks later isometric contractions were recorded, to determine the effect of (a) partial denervation and (b) nifedipine treatment on force output and motor unit numbers. The tension produced by nifedipine treated partially denervated muscles was 82% and 79% of the unoperated contralateral value for soleus and EDL, respectively. This was significantly greater than in untreated muscles, which only produced 61% and 48%, respectively. Mean motor unit force was also significantly larger with nifedipine treatment. Histological analysis revealed that a significantly larger proportion of the total number of muscle fibres remained in nifedipine-treated partially denervated muscles (soleus, 90% and EDL, 101%) compared with untreated muscles (soleus, 51% and EDL, 66%). Thus the number of neuromuscular contacts was increased with nifedipine treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call