Abstract

AbstractBACKGROUND:Numerous high purity ammonium‐type ionic liquid extractants have been prepared for engineering purposes. Bifunctional ionic liquid extractants (Bif‐ILEs) have been widely applied to separate and extract rare earths and metal ions with high extraction efficiencies and selectivities. In the present study, new Bif‐ILEs [A336][P204] and [A336][P507] have been used to extract rare earths from a simulated solution of a fluorescent powder in a high concentration of Al(NO3)3.RESULTS:Bif‐ILEs were prepared from Aliquat336 (A336) and the commercial organophosphorus acid extractants, P204 and P507. These extractants [A336][P204] and [A336][P507] have similar characteristics to neutral organophosphorus extractants. When these Bif‐ILEs were used to extract RE(III) from a simulated waste fluorescent powder system a third phase appeared which could be eliminated by the addition of 10% isopropanol modifier. The coexisting Al2O3in the fluorescent powder was changed to a salting‐out agent (Al(NO3)3) in the extraction process and promoted the extraction efficiency of RE(III). Using a countercurrent extraction process at a phase ratioVo:Vw= 4:1 and pH = 0.56, the RE(III) recovery reached 95.2% in 5–7 stages. Finally, the extractabilities of these bifunctional extractants were compared with the neutral organophosphorus extractants P350, TBP and Cyanex923 at different concentrations, initial pHs and temperatures.CONCLUSIONS:By comparison with other neutral organophosphorus extractants, Bif‐ILEs [A336][P204] and [A336][P507] can be considered efficient potential extractants for separating and recycling REEs and Al2O3from waste fluorescent powder. Copyright © 2011 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call