Abstract

Application of second harmonic signal waveforms in distributed feedback diode laser (DFB DL)-based wavelength modulation (WM) spectroscopy is limited by the waveform distortions arising from modulation characteristics of DFB DL. The principle and implementation of a technique for the recovery of pure-WM second harmonic signal waveforms are proposed and particular attention is devoted to the problem in DFB DL-based photoacoustic spectroscopy (PAS). The disturbance factors responsible for the distorted second harmonic signal are analyzed, and their characteristics are utilized to eliminate the distortion. A simple and practical prototype for water vapor detection is assembled to demonstrate and validate this technique. The waveform of the recovered second harmonic signal in WM-PAS using the technique matches that of a calculated pure-WM second harmonic signal using a Fourier decomposition of the Lorentzian profile well with a high regression coefficient, R2=0.9948. This offers the advantage of simplifying the spectral analysis, which, otherwise, would require a numerous calculation if the distortions were considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call