Abstract

Abstract The loss of highly sought-after metals such as gold, silver, and platinum during extraction processes not only constitutes a significant waste of valuable resources but also contributes to alarming environmental pollution. The ever-growing adverse impacts of these highly valued metals significantly increase the contamination of water bodies on discharge, while reducing the reusability potential of their corresponding processed wastewater. It is, therefore, of great interest to identify pragmatic solutions for the recovery of precious materials from processed water. In this review, pollution from targeted precious metals such as gold, silver, platinum, palladium, iridium, ruthenium, and rhodium was reviewed and analyzed. Also, the hazardous effects are elicited, and detection techniques are enumerated. An insightful approach to more recent treatment techniques was also discussed. The study reveals nano- and bio-sorption techniques as adoptable pragmatic alternatives, among other techniques, especially for industrial applications with merits of cost, time, waste management, and eco-friendliness. The results indicate that gold (46.2%), palladium (23.1%), platinum (19.2%), and silver (11.5%) are of utmost interest when considering recent recovery techniques. High yield and cost analysis reduction are reasons for the observed preference of this recovery process when considering groups of precious metals. The challenges and prospects of nanomaterials are highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.