Abstract

The presence of precious metals (PMs) in low-grade automobile shredder residue (ASR) makes it attractive for recycling. This study investigated the leaching and recovery characteristics of two PMs (Cu and Ag) and two heavy metals (Mn and Co) from ASR. The effects of H2O2, leaching temperature, liquid to solid (L/S) ratio, and particle size on metal leaching were determined in an aqueous solution of 0.5M nitric acid. The metal leaching rate was increased with increasing nitric acid concentration, amount of H2O2, L/S ratio and temperature. The leaching kinetics was analyzed by using a second-order reaction model. In the analysis of leaching kinetics, the metal leaching data were well fitted (R2⩾0.99) with the second-order reaction model. The activation energy (kJ/mol) for metal leaching was 39.6 for Cu, 17.1 for Ag, 17.3 for Mn and 29.2 for Co. Metal recovery was carried out by fractional precipitation with the addition of advanced Fenton’s regent. Metal recovery efficiency was increased to 99.95% for Cu, 99.8% for Mn, 90.0% for Ag and 96.46% for Co with the advanced Fenton’s regent. In particular, a novel finding of the PM recovery is that Cu can also be recovered directly from the leachate of ASR in the form of zero-valent copper (ZVC) nanoparticles (NPs). Hydrometallurgical recovery of the metals from ASR using nitric acid is highly efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.