Abstract

A Bayesian approach for joint restoration and segmentation of polarization encoded images is presented with emphasis on both physical admissibility and smoothness of the solution. Two distinct models for the sought polarized radiances are used: (i) the polarized light at each site of the image is described by its Stokes vector, which directly follows a mixture of truncated Gaussians, explicitly assigning zero probability to inadmissible configurations and (ii) polarization at each site is represented by the coherency matrix, which is parameterized by a set of variables assumed to be generated by a spatially varying mixture of Gaussians. Application on real and synthetic images using the proposed methods assesses the pertinence of the approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.