Abstract

A process for the valorization of seagrass residues has been developed, aiming to investigate its potential as a phosphate adsorbent and the production of added-value products, which can be assessed in agricultural applications. Posidonia oceanica residues were thermally treated (500 °C, 1 h) and were tested as an adsorbent of phosphate from real wastewater. Chemical leaching experiments of phosphate from dewatered anaerobic sludge (DWAS) were conducted, evaluating sonication and inorganic acids (sulfuric acid (SA), thermal-sulfuric acid (TSA), and nitric acid (NA)) as extraction methods. Τhe extraction efficiency of each method tested demonstrated that the most suitable acid medium to leach out phosphate were SA and TSA processes with 84.9 and 93.2% removal efficiency, respectively. Moreover, the saturation capacity of thermally treated P. oceanica was assessed, and the results confirmed the high phosphate adsorption capacity (179.1 mg g−1). Adsorption batch experiments with real wastes (anaerobic effluent wastewater and leached solution from DWAS), demonstrated that thermally treated seagrass could have a high adsorption efficiency and selectivity towards phosphate. After phosphate adsorption, the solid residues were mixed with compost in different ratio and then tested as fertilizer substitutes on plant growth. The solid residue after adsorption produced from anaerobic effluent or synthetic solutions imposed a positive effect on plant growth with germination index (GI) values 96.7–111.14%, for all types of seeds tested (Solanum Lycopersicum, Lepidium sativum, and Sinapis alba), while the solid residue after adsorption produced from DWAS leached solution negatively affected the germination of plants, probably due to potentially refractory compounds contained in DWAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.