Abstract
Infectious hematopoietic necrosis virus (IHNV) is a Novirhabdovirus and is the causative agent of a devastating acute, lethal disease in wild and farmed rainbow trout. The virus is enzootic throughout western North America and has spread to Asia and Europe. A full-length cDNA of the IHNV antigenome (pIHNV-Pst) was assembled from subgenomic overlapping cDNA fragments and cloned in a transcription plasmid between the T7 RNA polymerase promoter and the autocatalytic hepatitis delta virus ribozyme. Recombinant IHNV (rIHNV) was recovered from fish cells at 14 degrees C, following infection with a recombinant vaccinia virus expressing the T7 RNA polymerase (vTF7-3) and cotransfection of pIHNV-Pst together with plasmids encoding the nucleoprotein N (pT7-N), the phosphoprotein P (pT7-P), the RNA polymerase L (pT7-L), and the nonvirion protein NV (pT7-NV). When pT7-N and pT7-NV were omitted, rIHNV was also recovered, although less efficiently. Incidental mutations introduced in pIHNV-Pst were all present in the rIHNV genome; however, a targeted mutation located in the L gene was eliminated from the recombinant genome by homologous recombination with the added pT7-L expression plasmid. To investigate the role of NV protein in virus replication, the pIHNV-Pst construct was engineered such that the entire NV open reading frame was deleted and replaced by the genes encoding green fluorescent protein or chloramphenicol acetyltransferase. The successful recovery of recombinant virus expressing foreign genes instead of the NV gene demonstrated that the NV protein was not absolutely required for viral replication in cell cultures, although its presence greatly improves virus growth. The ability to generate rIHNV from cDNA provides the basis to manipulate the genome in order to engineer new live viral vaccine strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.