Abstract

Recovery after crush of neuroendocrine caudodorsal cells (CDCs) in the aging brain of the mollusc Lymnaea stagnalis, was determined as a measure of neuronal plasticity. Neuronal plasticity was determined in differently aged animals containing intact (young: 170 days) or morphologically and physiologically degraded (middle-aged: 305 days and old: 443 days) CDCs. Branching patterns and electrical and chemical connectivity and afterdischarge activity of CDCs were studied. Immediately after crush, electrical coupling and chemical transmission were absent. In all age groups partial recovery occurred within about 20 days. CDCs in old animals exhibited restricted recovery of electrical coupling and enhanced recovery of chemical transmission. In young and middle-aged animals normal afterdischarges occurred from day 8 on. In old animals abnormal afterdischarges occurred starting at day 0, becoming normal by day 12 after crush. Recovery of CDC branching was partial in all age groups. It is concluded that in the aging brain recovery of CDCs after injury does occur but is differentially restricted. Our results suggest that senescent degraded neurons still possess a considerable degree of plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.