Abstract

BackgroundThe extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period. Indeed, neuromuscular monitoring in an intra-operative setting is strongly advocated. Acetylcholinesterase inhibitors can reverse muscle block, but their short half-life may lead to residual curarization in the ward, especially when intermediate or long-acting NMBAs have been administered. Sugammadex is the first selective reversal drug for steroidal NMBAs; it has been shown to give full and rapid recovery of muscle strength, thus minimizing the occurrence of residual curarization. Acceleromyography of the adductor pollicis is the gold standard for detecting residual curarization, but it cannot be carried out on conscious patients. Ultrasonography of diaphragm thickness may reveal residual effects of NMBAs in conscious patients.Methods/designThis prospective, double-blind, single-center randomized controlled study will enroll patients (of American Society of Anesthesiologists physical status I–II, aged 18–80 years) who will be scheduled to undergo deep neuromuscular block with rocuronium for ear, nose, or throat surgery. The study’s primary objective will be to compare the effects of neostigmine and sugammadex on postoperative residual curarization using two different tools: diaphragm ultrasonography and acceleromyography of the adductor pollicis. Patients will be extubated when the train-of-four ratio is > 0.9. Diaphragm ultrasonography will be used to evaluate the thickening fraction, which is the difference between the end expiratory thickness and the end inspiratory thickness, normalized to the end expiratory thickness. Ultrasonography will be performed before the initiation of general anesthesia, before extubation, and 10 and 30 min after discharging patients from the operating room. The secondary objective will be to compare the incidence of postoperative complications due to residual neuromuscular block between patients who receive neostigmine and those who receive sugammadex.DiscussionPostoperative residual curarization is a topic of paramount importance, because its occurrence can cause complications and increase the length of stay in hospital and the related costs. Diaphragm ultrasound assessment may become a bedside integrative tool in the neuromuscular monitoring field to detect concealed residual curarization in surgical patients who have received paralyzing agents.Trial registrationEudraCT, 2013-004787-62. Registered on 18 June 2014, as “Evaluation of muscle function recovery after deep neuromuscular blockade by acceleromyography of the adductor pollicis or diaphragmatic echography: comparison between sugammadex and neostigmine.”ClinicalTrials.gov,NCT02698969. Registered on 15 February 2016, as “Recovery of Muscle Function After Deep Neuromuscular Block by Means of Diaphragm Ultrasonography and Adductor Pollicis Acceleromyography: Comparison of Neostigmine vs. Sugammadex as Reversal Drugs.”

Highlights

  • The extensive use of neuromuscular blocking agents (NMBAs) during surgical procedures still leads to potential residual paralyzing effects in the postoperative period

  • Postoperative residual curarization is a topic of paramount importance, because its occurrence can cause complications and increase the length of stay in hospital and the related costs

  • Vivier et al recently demonstrated that the thickening fraction (TF), namely the difference between the thickness at the end of inspiration (TEI) and that at the end of expiration (TEE), normalized for TEE (TEI – TEE/TEE), is directly related to respiratory workload, and they suggested that TF could be used as an index to select those patients ready to be weaned from noninvasive ventilation [18]

Read more

Summary

Discussion

Diaphragm ultrasonography has been used for 25 years to evaluate diaphragmatic dysfunction in many clinical scenarios [18, 24,25,26]. Ultrasound assessment of the diaphragm is not feasible if the operator is not adequately trained, but when skilled operators are available, this tool enables bedside evaluation of the major respiratory muscle. One potential limitation of the present protocol could be that previous studies have demonstrated that repeatability ranges from 13 to 19% [22]. The present study will be the first that aims to detect diaphragmatic dysfunction using ultrasonography for the purpose of assessing PORC after deep neuromuscular blockade with an aminosteroid muscle relaxant drug.

Methods/design
Findings
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call