Abstract
A leaching process for the recovery of cobalt and lithium from spent lithium-ion batteries (LIB) is developed in this work. Three different organic acids, namely citric acid, malic acid and aspartic acid, are used as leaching reagents in the presence of hydrogen peroxide. The cathode active materials before and after acid leaching are characterized by X-ray diffraction and scanning electron microscopy. Recovery of cobalt and lithium is optimized by varying the leachant and H2O2 concentrations, the solid-to-liquid ratio, and the reaction temperature and duration. Whereas leaching with citric and malic acids recovered in excess of 90% of cobalt and lithium, leaching with aspartic acid recovered significantly less of these metals. The leaching mechanism likely begins with the dissolution of the active material (LiCoO2) in the presence of H2O2 followed by chelation of Co(II) and Li with citrate, malate or aspartate. An environmental analysis of the process indicates that it may be less energy and greenhouse gas intensive to recover Co from spent LIBs than to produce virgin cobalt oxide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.