Abstract

The recovery of metals from waste effluents is necessary for pollution prevention and sustainable practice. High gradient magnetic separation (HGMS) is seen as a viable method. We investigated the capture of valence copper from aqueous copper ion by HGMS in combination with a chemical reduction process. When a copper solution (3.9 or 15.6 mM) was exposed to excess of dithionite (mole ratio of 1:3) in the presence of ammonia (mole ratio of 4) and amended with MnCl2 (2.5 g/L) and the mixture passed through a flow reactor under a strong magnetic field (10000 Gauss), valence copper was obtained and captured in the reactor with well over 95% yields. The chemical reduction reactions were unaffected by the presence of MnCl2 while the amount of MnCl2 (0, 20 and 32 mM) has significantly varied the copper recovery efficiency, especially in the case of high initial copper ion concentration (15.6 mM). Formation of MnO2 flocs was found to have a detrimental effect on copper removal efficiency. The HGMS method offers a tool of resource recovery for copper from waste effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.