Abstract

A new green pathway of in situ electro-leaching coupled with electrochemically switched ion exchange (EL-ESIX) technology was developed for the separation and recovery of valuable metal ions from waste lithium batteries. By using the in situ electro-leaching, the leaching rates of Li+ and Co2+ from the prepared LiCoO2 film electrodes reached 100 % and 93.30 %, respectively, under the combined effect of the acidic microenvironment formed by the anodic electrolytic water and electrostatic repulsion. Subsequently, the Li+ in the electrolyte was further extracted by an electrochemically switched ion exchange (ESIX) process using LiMn2O4 as the film electrode, and Li+ was further enriched in the eluate by a cyclic adsorption and desorption process. The results indicate that the in situ electro-leaching has significant advantages over powder leaching, and for the recycling of waste lithium batteries, the final lithium recovery rate reached 94.51 % by using this in situ EL-ESIX technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call