Abstract

Laboratory experiments were conducted to measure flow of a light, non-aqueous phase liquid (LNAPL or simply “oil”) in porous media. The objective of these experiments was to measure oil recovery as influenced by hysteresis, the oil-water capillary fringe, and an oil seepage face. Oil was infiltrated and allowed to redistribute across the horizontal length of a two-dimensional tank filled with medium sand. The first experiment involved oil recovery without water pumping, while the second experiment involved oil recovery with water pumping to increase the gradient toward the recovery well. Observed oil recovery compared favorably with the predictions of a numerical model (ARMOS). A dual-energy gamma radiation attenuation system monitored oil and water saturations throughout the experiments, while hydrophobic tensiometers measured the location of the air-oil table (Z ao). The experimental distribution of oil saturations suggested the need to incorporate an oil-water capillary fringe in the calculation of oil trapping in the saturated zone. Measurements of Z ao indicated that hysteresis influenced the liquid saturation-pressure relationships. When the effects of hysteresis were incorporated into the model, predicted and measured values of Z ao came into agreement, especially at early times during the recovery process. Experimental data also suggested the presence of an oil seepage face at the pumping well, but model results were not sensitive to this factor. Oil saturation measurements at later times suggested that the oil may have experienced delayed yield, an effect that was not modeled explicitly. A sensitivity analysis revealed that oil recovery predictions were most affected by horizontal hydraulic conductivity, fluid scaling parameters β ao and β ow, and van Genuchten α, n, and S m. Overall, the numerical model appeared to match measured data for oil saturation, pressure, and recovery under two sets of boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.