Abstract

With the increasing demand for Li, the recovery of Li from solid waste, such as Li-containing Al electrolytes, is receiving growing attention. However, Li-containing Al electrolytes often contain large amounts of F, leading to environmental pollution. Herein, a new method for preparing water-soluble Li salt from waste Li-containing Al electrolytes with high F and Na contents is proposed based on CaO roasting and water leaching. The effects of different roasting and leaching conditions on the Li leaching efficiency and reaction pathway were systematically investigated. Under the optimum processing conditions, the Li leaching efficiency reached 98%, while those of Na and F were 98.41% and 0.24%, respectively. Phase evolution analysis showed that the addition of CaO promoted the conversion of LiF and Na2LiAlF6 to Li2O, whereas F entered the slag phase as CaF2, which could be reused as a raw material for steel refinement. Overall, this study proposes an efficient and environmentally friendly method for the treatment and resource utilization of waste Al electrolytes with high F and Na contents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.