Abstract

ABSTRACTWorking memory (WM) performance can be enhanced by an informative cue presented during storage. This effect, termed a retrocue benefit, can be used to explore how observers prioritize information stored in WM. Recent studies have demonstrated that neural representations of task-relevant memoranda are strengthened following a retrocue, suggesting that participants can supplement active memory traces with information from other memory stores. We sought to better understand these additional store(s) by asking whether they are subject to the same temporal degradation seen in active memory representations during storage. We tested this possibility by reconstructing and quantifying representations of remembered positions from EEG activity while varying the interval separating an encoding display and retrocue during a spatial WM task. We observed a significant increase in the quality of location-specific representations following a retrocue, but the magnitude of this benefit was linearly and inversely related to the timing of the retrocue such that later cues yielded smaller increases. This result suggests that participants’ ability to supplement active memory representations with information from additional memory stores is not static: the information maintained in these stores may be subject to temporal degradation, or these stores may become more difficult to access over time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call