Abstract

The metal indium termed as ‘rare’ in recent days due to its increasing demand in the formulations of electronic and energy-related gadgets and scarce supply resources. Hence, the attempts to recover indium from the secondary resources, such as recycling of the indium abundant waste materials, received increasing research focus. The major indium consumption happens in the form of indium tin oxide (ITO) that used for the fabrication of liquid-crystal displays (LCD). The end-of-life LCD screens, termed as ITO-glass hereafter, are an emerging contributor to the global e-waste load and can be an impending secondary source of indium. The present work introduces a new technique for the treatment of waste ITO-glass using aminopolycarboxylate chelants (APCs) in combination with a mechanochemical treatment process. APCs are capable of forming stable complexes with the indium deposited on the ITO-glass, whereas the rate of recovery was not substantial. The mechanochemical treatment induces the destruction of crystalline structure with which the ITO fragments are attached and facilitate the increased indium dissolution with the chelants. The increase was more prominent followed by a decrease in the cumulative processing time from 24 to 6h when the vitrified ITO-glass was simultaneously crushed and washed with the chelants. The extraction of indium was better at the acidic pH condition, and it was further intensified when the operating temperature was raised to ≥120°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.