Abstract
Thermosetting polymers are used in a wide range of applications due to their robust mechanical strength and superior flame retardancy. Despite these technical benefits, recycling of thermosetting polymers has been challenging because of their crosslinking nature. Moreover, their disposal through conventional methods (landfill and combustion) poses environmental concerns, such as microplastics and air pollutants. To address these issues, this study introduces a thermo-chemical disposal platform for thermosetting polymer wastes that employs carbon dioxide (CO2) as a reactive medium. In this work, melamine-formaldehyde was used as model compound of thermosetting polymers. In single-stage pyrolysis, it was revealed that CO2 plays a crucial role in controlling in the compositional matrices of pyrolytic gases, liquid products, and wax. These compositional changes were attributed to the homogeneous reactions between CO2 and the volatile compounds released from the thermolysis of MF. To enhance the thermal cracking of the MF, a double-stage pyrolysis process was tested, which increased the production of pyrolytic gases and eliminated wax formation. However, the slow kinetics governing the reactivity of CO2 limits the occurrence of homogeneous reactions. A nickel-based catalyst was used to accelerate reaction kinetics. The catalytic pyrolysis under CO2 conditions led to substantial increases in syngas (H2 and CO) production of 880% and 460%, respectively, compared with double-stage pyrolysis. These findings demonstrate that thermosetting polymer wastes can be valorized into gaseous fuels through thermo-chemical process, and CO2 enhances the recovery of energy and chemicals. Therefore, this study presents an innovative technical platform to convert thermosetting polymer wastes and CO2 into syngas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.