Abstract

To demonstrate the roles of p16(INK4a) in the senescence of human chondrocytes and the progression of osteoarthritis (OA). Immunohistochemistry and reverse transcriptase polymerase chain reaction (RT-PCR) were performed to examine p16(INK4a) expression in fetal, normal age-matched and OA cartilage, and Western blot was used in primary cultured chondrocytes from different origins. To explore a functional p16(INK4a) knockdown in OA chondrocytes, the primary cultured cells were treated with p16(INK4a)-specific small interfering ribonucleic acids (siRNAs). Expression of p16(INK4a), p14(ARF) and p53 was observed by Western blot and RT-PCR. The phosphorylation status of pRb, senescence-associated beta-galactosidase (SA-beta-gal), cell G1/S transition and cell proliferation were studied by Western blot, histological staining, 3H-thymidine incorporation and cell counts respectively. Expression of the collagen I, collagen II and aggrecan genes was measured by semiquantitative RT-PCR. To establish the response of chondrocytes to cytokines, cells were treated with transforming growth factor-beta1 (TGF-beta1) or interleukin-1alpha (IL-1alpha) and examined for incorporation of 3H-thymidine, 3H-proline and 35S-sulphate respectively. A significant increase of p16(INK4a) was detected in OA chondrocytes compared with normal age-matched and fetal chondrocytes (P<0.01) in vivo and in vitro. Treated with p16(INK4a)-specific siRNAs, OA chondrocytes displayed a significant decrease in p16(INK4a) expression with an increase of phosphorylated pRb, but no alteration of p14(ARF) and p53 expression, followed by decreases of senescent features and increases in the expression of some chondrocyte-specific genes and overall repair capacity. p16(INK4a) is instrumental in the senescence of human articular chondrocytes or OA. The reduction of p16(INK4a) by RNA interference (RNAi) contributed to the recovery of osteoarthritic chondrocytes, suggesting that p16(INK4a) may be a viable future therapeutic candidate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.