Abstract

Exponentially growing cultures of Klebsiella pneumoniae were subjected to heat shocks in the superoptimal and supermaximal temperature ranges for growth on glucose in a defined mineral salts medium. Transitory changes in the specific growth rate constant during recovery were evident. The response was heat shock temperature and exposure time dependent. Cell viability determinations, based on colony counts, indicated complete recovery from heat treatments at superoptimal temperatures. In contrast, at supermaximal temperatures, discrepancies in colony counts on different agars were observed. The kinetic response of the specific growth rate constant after a heat shock at supermaximal temperatures is explained by segregation within the bacterial population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call