Abstract

Mycotoxins’ contamination of food products is a well-known issue that is gaining interest nowadays due to increasing contaminations that are also related to climate change. In this context, and considering the principles of Circular Economy, finding robust and reliable strategies for the decontamination and valorisation of mycotoxin-contaminated products becomes mandatory. Anaerobic digestion (AD) and composting appear as promising biological treatments to degrade mycotoxins and allow for recovering energy (i.e., biogas production) and materials (i.e., nutrients from digestate and/or compost). The aim of the present paper was to carry out an organic revision of the state of the art of energy and materials recovery from mycotoxin-contaminated food products through biological treatments, highlighting results and research gaps. Both processes considered were not generally affected by the contamination of the feedstocks, proving that these compounds do not affect process stability. Mycotoxins were highly removed due to the concurrence of microbiological and physical agents in AD and composting. From the literature review, emerged the points that still need to be addressed before considering large scale application of these processes, which are (i) to deepen the knowledge of biochemical transformations of mycotoxins during the processes, (ii) to assess the fate of mycotoxins’ residues and metabolites in soil once digestate/compost are applied, (iii) to evaluate and optimize the integration of AD and composting in order to increase the environmental and economical sustainability of the processes, and (iv) to update legislation and regulations to allow the agricultural reuse of organic fertilizers obtained from contaminated feedstocks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call