Abstract

Semi-aerobic aged refuse biofilters (SAARB) are known to efficiently remove organic matter, nitrogenous substances, and anions from landfill leachate. However, long-term recirculation of mature landfill leachate inevitably leads to accumulation of pollutants and decreases treatment capacity. In this study, the washing action provided by domestic sewage was used to recover and even enhance the treatment performance of SAARBs treating mature landfill leachate. Three SAARB columns were operated for 300d after which a "Recirculation-Washing-Recirculation" sequence was followed. In the first recirculation period (22d), removal of chemical oxygen demand (COD) and total nitrogen (TN) decreased from ca. 90% and 60%, respectively, initially to about 75% and less than 20%, respectively. Thereafter, washing (20d) of the SAARBs was accomplished by applying domestic sewage. In the subsequent second recirculation period (30d), the SAARBs were operated at the same hydraulic loading as used initially, but achieved high (ca. 90%) COD and relatively high (ca. 59%-76%) TN removal, including degradation of refractory organic matter such as humic- and fulvic-like substances. Overall, the mechanisms of the treatment performance recovery (including organics degradation and nitrification-denitrification) using domestic sewage can be attributed to three main effects: (1) some accumulated pollutants were washed out, thereby leading to recovery of the adsorption ability of aged refuse; (2) the inhibition of bio-refractory organics stress on microbial activities was mitigated by domestic sewage washing; and (3) the wash out of some accumulated salts (e.g., chloride and sulfate ions) probably helped the microbial activity recover.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call