Abstract

Increasing concerns about freshwater sources necessitate the management of wastewater, such as the wastewater generated from Clean-in-Place (CIP) operations. In this investigation, a membrane system composed of nanofiltration (NF) and direct contact membrane distillation (DCMD) was proposed to manage model dairy CIP wastewater that contained NaOH as an alkaline cleaning agent. During the NF step, prefiltration by a 4 kDa membrane or a 4 kDa membrane followed by a 200 Da membrane (4 kDa/200 Da) was used to remove the whey protein and lactose. With these two membranes in series of NF, the protein concentration was reduced by 92.4% and the lactose content was reduced to a non-detectable level when compared to the model CIP wastewater. Before concentrating the permeates from NF steps, three DCMD membranes (FR, Solupor, and ST) with different characteristics were evaluated to manage the NF permeates from 4 kDa or 200 Da NF. An increase in the feed temperature from 40 °C to 60 °C resulted in an increase in the water flux during DCMD operation, except for FR. In addition, it was found that ST generated the highest water flux when compared to the other membranes. Using ST and a feed temperature of 60 °C, the permeates from 4 kDa or 4 kDa/200 Da were continuously concentrated for 7 h with DCMD. During this concentration, there was no significant decline in flux. The cleaning effectiveness of the cleaning agent (NaOH) recovered by NF and DCMD was compared with a fresh cleaning solution using quartz crystal microbalance with dissipation (QCM-D). It was found that the cleaning agents recovered by 4 kDa/200 Da NF presented a statistically identical cleaning rate compared to fresh NaOH. This research highlights the potential of NF and DCMD to regenerate alkaline cleaning agents, while reclaiming water from dairy CIP wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.