Abstract

We have previously shown that activation of the homologous recombinational repair pathway leads to a block of cell division in corrected cells, possibly through the activity of checkpoint proteins Chk1 and Chk2. In this study, we examine the long-term impact of this stalling on the growth of cells that have enabled gene repair events. Using a mutated eGFP gene as an episomal reporter, we show that corrected (eGFP-positive) cells contain only a few active replication templates 2 weeks after electroporation, yet do not display an apoptotic or senescent phenotype. By 6 weeks after electroporation, cells resume active replication with a cell cycle profile that is comparable to that of the non-corrected (eGFP-negative) population. These results indicate that the initial stalling is transient and eGFP-positive cells eventually resume a normal phenotypic growth pattern, allowing for passaging and expansion in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.