Abstract

In this study, an ultrasonic-assisted extraction using microemulsions was developed for the recovery of natural astaxanthin from shrimp waste. To select applicable solvent systems, the phase equilibrium, microstructure, and physical properties of the microemulsions were investigated. Then the effect of ultrasonic power, ultrasonic time, and microemulsion composition on the extraction efficiency (EEAst) and extraction yield (EAst) of astaxanthin were determined. Compared with organic solvents (ethanol, acetone, and dimethyl sulfoxide), the microemulsion contained tributyloctylphosphonium bromide ([P4448]Br), tributyloctylphosphonium trifluoroacetate ([P4448]CF3COO), or tetrabutylphosphonium trifluoroacetate ([P4444]CF3COO) resulted in significantly enhanced extraction of astaxanthin due to the stronger electrostatic interactions and hydrogen-bonding interactions. When ultrasonic-assisted extraction conditions were 50 W and 60 min, the highest EEAst and EAst reached 32.47 µg·g−1 and 99% by using the IL-in-water microemulsion of [P4448]Br/(TX-100 + n-butanol)/water (0.13:0.25:0.62, w/w), respectively. The IL-based microemulsion is an adequate alternative to conventional methods in the extraction and recovery of astaxanthin from natural bioresources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.