Abstract

Delta-crystallin, the major soluble protein component in the avian eye lens, is homologous to argininosuccinate lyase (ASL). Two delta-crystallin isoforms exist in ducks, delta1- and delta2-crystallin, which are 94% identical in amino acid sequence. While duck delta2-crystallin (ddeltac2) has maintained ASL activity, evolution has rendered duck delta1-crystallin (ddeltac1) enzymatically inactive. Previous attempts to regenerate ASL activity in ddeltac1 by mutating the residues in the 20s (residues 22-31) and 70s (residues 74-89) loops to those found in ddeltac2 resulted in a double loop mutant (DLM) which was enzymatically inactive (Tsai, M. et al. (2004) Biochemistry 43, 11672-82). This result suggested that one or more of the remaining five amino acid substitutions in domain 1 of the DLM contributes to the loss of ASL activity in ddeltac1. In the current study, residues Met-9, Val-14, Ala-41, Ile-43, and Glu-115 were targeted for mutagenesis, either alone or in combination, to the residues found in ddeltac2. ASL activity was recovered in the DLM by changing Met-9 to Trp, and this activity is further potentiated in the DLM-M9W mutant when Glu-115 is changed to Asp. The roles of Trp-9 and Asp-115 were further investigated by site-directed mutagenesis in wild-type ddeltac2. Changing the identity of either Trp-9 or Asp-115 in ddeltac2 resulted in a dramatic drop in enzymatic activity. The loss of activity in Trp-9 mutants indicates a preference for an aromatic residue at this position. Truncation mutants of ddeltac2 in which the first 8, 9, or 14 N-terminal residues were removed displayed either decreased or no ASL activity, suggesting residues 1-14 are crucial for enzymatic activity in ddeltac2. Our kinetic studies combined with available structural data suggest that the N-terminal arm in ASL/delta2-crystallin is involved in stabilizing regions of the protein involved in substrate binding and catalysis, and in completely sequestering the substrate from the solvent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.