Abstract

Upcycling of spent plastics has become a more emergent topic than ever before due to the rapid generation of plastic waste associated with the change of lifestyles of the human society. Polyethylene terephthalate (PET) is a major aromatic plastic and herein, the conversion of PET back into arenes was demonstrated in a one-pot reaction combining depolymerization and hydrodeoxygenation (HDO) over a Co/TiO2 catalyst. The effectiveness of the Co/TiO2 catalyst in HDO and the underlining reaction pathway were established using the PET monomer terephthalic acid (TPA) as the substrate. Quantitative TPA conversion together with 75.2 mol% xylene and toluene selectivity under 30 bar initial H2 pressure at 340 °C was achieved after 4 h reaction. More encouragingly, the catalyst induced both depolymerization and HDO reaction via C-O bond cleavage when PET was used as a substrate. 78.9 mol% arenes (toluene and xylene) was obtained under optimized conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call