Abstract

Gas-permeable membrane technology is useful to recover ammonia (NH3) from liquid manures. In this study, phosphorus (P) recovery via MgCl2 precipitation was enhanced by combining it with NH3 recovery through gas-permeable membranes. Anaerobically digested swine wastewater containing approximately 2300 mg NH4+-N L−1 and 450 mg P L−1 was treated using submerged membranes plus low-rate aeration to recover the NH3 from within the liquid and MgCl2 to precipitate the P. The experiments included a first configuration where N and P were recovered sequentially and a second configuration with simultaneous recovery. The low-rate aeration reduced the natural carbonate, increased pH and accelerated NH3 uptake by the gas-permeable membrane system, which in turn benefited P recovery. Phosphorus removal efficiency was >90% and P recovery efficiency was about 100%. With higher NH3 capture, the recovered P contained higher P2O5 content (37–46%, >98% available), similar to the composition of the biomineral newberyite (MgHPO4·3H2O).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call