Abstract

To give information about intracellular Ca2+ translocation during and after K-contractures in vertebrate skeletal muscle fibers, we examined recovery of action potentials and twitches after interruption and spontaneous relaxation of K-contractures at low temperature (3 degrees C) that greatly reduced the rate of Ca2+ reuptake by the sarcoplasmic reticulum. On membrane repolarization interrupting K-contractures, the amplitude of both action potentials and twitches recovered quickly, while the falling phase of action potential was markedly slowed at first to prolong its refractory period, so that repetitive stimulation (20 Hz) did not produce a complete tetanus. Meanwhile, on membrane repolarization after spontaneous relaxation of K-contractures, the action potentials were markedly reduced in amplitude and prolonged in duration at first, also resulting in prolonged refractory period. These results are discussed in connection with Ca2+ absorption to the surface and transverse tubule membranes, producing changes in action potential kinetics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.