Abstract

The Sudbury region of northeastern Ontario, Canada, provides one of the world’s best examples of the resilience of aquatic ecosystems after reductions in atmospheric contaminant deposition. Thousands of lakes around the Sudbury metal smelters were badly damaged by acid deposition. Lakes closest to the smelters were also contaminated by metal particulates. However, large reductions in atmospheric SO2and metal emissions starting in the early 1970s have led to widespread chemical improvements in these lakes, and recovery has been observed for various aquatic biota. Studies of Sudbury-area lakes are advancing our understanding of chemical and biological lake recovery; however, recovery is a complicated process and much remains to be learned. Biological recovery has often been slow to follow chemical recovery, and it has become apparent that the recovery of lakes from acidification is closely linked to interactions with other large-scale environmental stressors like climate change and Ca declines. Thus, in our multiple-stressor world, recovery may not bring individual lakes back to their exact former state. However, with time, substantial natural biological recovery toward typical lake communities can be reasonably expected for most but not necessarily all biota. For organisms with limited dispersal ability, particularly fish, human assistance may be necessary to re-establish typical communities. In lakes where food webs have been severely altered, re-establishment of typical diverse fish communities may in fact be an important element aiding the recovery of other important components of aquatic ecosystems including zooplankton and benthic macroinvertebrates. In the lakes closest to the smelters, where historically watersheds as well as lakes were severely damaged, the recovery of aquatic systems will be closely linked to ongoing terrestrial recovery and rehabilitation, particularly through the benefits of increased inputs of terrestrially derived organic matter. The dramatic lake recovery observed in the Sudbury area points to a brighter future for these lakes. However, continued monitoring will be needed to determine future changes and help guide the management and protection of Sudbury-area lakes in this multiple-stressor age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call