Abstract

Difficulties have been reported in quantitating 3-iodothyronamine (T1AM) in blood or serum, and tentatively attributed to problems in extraction or other pre-analytical steps. For this reason, even cell culture experiments have often be performed with unphysiological protein-free media. The aim of this study was to evaluate the recovery of exogenous T1AM added to a standard cell culture medium, namely Dulbecco's minimum essential medium (DMEM) supplemented with fetal bovine serum (FBS), and to other biological matrixes. Cell culture media (Krebs-Ringer buffer, DMEM, FBS, DMEM + FBS, used either in the absence or in the presence of NG108-15 cells) and other biological matrixes (rat brain and liver homogenates, human plasma, and blood) were spiked with T1AM and/or deuterated T1AM (d4-T1AM) and incubated for times ranging from 0 to 240 minutes. Samples were then extracted using a liquid/liquid method and analyzed using liquid chromatography coupled to mass spectrometry in order to assay T1AM and its metabolites, namely 3-iodothyroacetic acid (TA1), thyronamine, thyroacetic acid, N-acetyl-T1AM, and T1AM esters. In FBS-containing buffers, T1AM decreased exponentially over time, with a half-life of 6-17 minutes, depending on FBS content, and after 60 minutes, it averaged 0-10% of the baseline. T1AM metabolites were not detected, except for minimum amounts of TA1. Notably, d4-T1AM decreased over time at a much lower rate, reaching 50-70% of the baseline at 60 minutes. These effects were completely abolished by protein denaturation and partly reduced by semicarbazide. In the presence of cells, T1AM concentration decreased virtually to 0 within 60 minutes, but TA1 accumulated in the incubation medium, with quantitative recovery. Spontaneous decrease in T1AM concentration with isotopic difference was confirmed in rat organ homogenates and human blood. These results suggest binding and sequestration of T1AM and/or its aldehyde derivative by blood and tissue proteins, with significant isotope effects. These issues might account for the technical problems complicating the analytical assays of endogenous T1AM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call