Abstract

Soil erosion induces variability in soil properties which may influence nutrient use efficiency. A 2-yr field study was conducted with the following objectives: (1) to determine the recovery of 15N-labelled fertilizers applied to barley growing on artificially eroded soil, and (2) to compare N losses from nitrate- and ammonia-based N fertilizers. Field experiments were conducted in north-central Alberta in 1991 and 1992 on an Orthic Gray Luvisol (Site 1) and on an Eluviated Black Chernozem (Site 2) soil. At each site, a factorial experiment of three levels of artificial erosion (0, 10 and 20 cm) and three N sources (KNO3, urea, and control) was laid out as a split-plot design with four replications. The 15N-labelled fertilizers (5.63 atom % abundance) were banded in June 1991 at 150 kg N ha−1 within 46-cm by 46-cm steel frame microplots. The proportion of added N recovered by barley (Hordeum vulgare L.) was not affected by erosion level. Periodical water saturation and NO3− availability suggested denitrification as a major mechanism of N loss. The N losses ranged from 12 to 51 g N ha−1 in 1991 and 20 to 80 kg N ha−1 over the 2-yr period, but the N losses did not relate to erosion level. The N losses after 2 yr were greater from KNO3 than from urea at Site 1. Most of the added 15N was found in the surface 0- to 15-cm layer, but amounts of 15N were detected in the 15- to 30-cm or 30- to 45-cm layers. The results call for continued development of N management techniques geared to optimize crop growth and minimize losses from fields. Key words: Artificial erosion, barley, fate of applied N, 15N-labelled fertilizers, N immobilization, N loss

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.