Abstract

We studied the interrelation between oxygen consumption and myocardial blood flow (MBF) during recovery. MBF is directly dependent on oxygen consumption. The latter is linearly related to the heart rate-blood pressure product (RPP, bpm × mmHg), an index reflecting external cardiac work. In the immediate post-exercise period, cardiac output decreases considerably. This is expected to be paralleled by a rapid fall in oxygen demand, rendering ischaemia unlikely. Thus, the phenomenon of ST-segment depression during recovery remains unexplained. (15)O-labelled water and positron emission tomography were used to measure MBF in 14 young healthy volunteers (mean age 27 ± 3 years) during the following study conditions: (i) at rest, (ii) during a steady submaximal supine bicycle exercise stress within the scanner, and (iii) during recovery immediately after cessation of exercise. During recovery, RPP decreased by 43% (18 768 ± 1337 vs. 11 652 ± 3224, P < 0.001). In contrast, the associated decrease in MBF (2.52 ± 0.52 vs. 1.93 ± 0.50 mL/min/g, P < 0.001) and perfusion reserve (2.68 ± 0.51 vs. 2.03 ± 0.42, P < 0.001) was significantly less pronounced (-24%, P < 0.01), indicating a relative delay in MBF recovery compared with cardiac work load. The mismatch between a rapid decrease in cardiac workload but preserved hyperaemic response early after cessation of physical exercise suggests an uncoupling of cardiac work and MBF during recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call